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We study the occurrence of excitonic superfluidity in electron-hole bilayers at zero temperature. We not only
identify the crossover in the phase diagram from the BCS limit of overlapping pairs to the BEC limit of
nonoverlapping tightly bound pairs but also, by varying the electron and hole densities independently, we can
analyze a number of phases that occur mainly in the crossover region. With different electron and hole effective
masses, the phase diagram is asymmetric with respect to excess electron or hole densities. We propose, as the
criterion for the onset of superfluidity, the jump of the electron and hole chemical potentials when their
densities cross.
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There is a growing interest in the physics of the BCS-
BEC crossover, owing to the recent experimental advances
with trapped Fermi atoms. With the use of Fano-Feshbach
resonances, this crossover has been observed with fermionic
6Li and 40K atoms1 which become composite bosons in the
BEC limit. Although trapped atoms represent an ideal testing
ground for a fundamental understanding of the BCS-BEC
crossover, technological applications exploiting the occur-
rence of condensates will most probably rely on semiconduc-
tor systems. In these systems, excitons made up of electrons
and holes play the role of composite bosons.

Excitonic systems were in fact the first to be proposed for
the BCS-BEC crossover,2 as an extension of the excitonic
condensation phenomenon.3 Subsequently, spatially sepa-
rated electron-hole systems were proposed,4,5 to avoid the
fast electron-hole recombination which hinders BEC in the
bulk. Particularly promising for the generation of excitonic
BEC �Refs. 6–8� are the bilayer quantum-well systems,9–12

with the electrons and holes separated by a distance d. Tech-
nological advances have made it possible to independently
contact the two layers in GaAs separated by an AlGaAs bar-
rier of thickness down to 15 nm.13 A very promising devel-
opment is the reported fabrication of a fully undoped
electron-hole bilayer device.14 This leads to superior control
of the independent carrier densities and the capability of ul-
tralow densities. Also, the reduced disorder favors excitonic
condensation.15 The value d=50 nm of the present devices is
too wide, but our calculations indicate that a reduction of d
by a factor of 2 would be sufficient to generate the various
phases discussed in this paper. Devices with smaller d are
foreshadowed in Ref. 14.

In this paper, we consider the BCS-BEC crossover in
electron-hole bilayers when the densities of the electrons and
holes are varied independently of each other. The effect of
the density imbalance resembles that of a magnetic field in a
superconductor �disregarding orbital effects� first considered
by Sarma.16 The specific system we shall consider as an ex-
ample is GaAs-AlGaAs.

Recent experiments with population imbalance in ultra-
cold trapped Fermi atoms17 have stimulated a considerable
amount of theoretical work on two-component Fermi sys-
tems with density imbalance.18,19 Emphasis has been placed

on the possible occurrence of exotic phases in addition to the
ordinary BCS pairing.18,20,21 However, in these systems the
presence of a trap and their charge neutrality inhibit the oc-
currence of the exotic phases, and so far only phase separa-
tion between a superfluid core with equally matched popula-
tions and an outer normal phase has been detected.

Electron-hole bilayers may offer a better opportunity of
observing such exotic phases because the Coulomb repulsion
within each layer acts to suppress phase separation.22 In ad-
dition, we find that the different electron and hole effective
masses in GaAs, me and mh, and also the nonlocal nature of
the electron-hole attraction both favor the occurrence of ex-
otic phases. These include the Sarma phase with one or two
Fermi surfaces, and the Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� phase.23 The relative extension of these phases is
quite asymmetric between an imbalance with more holes and
an imbalance with more electrons. We also find that in the
superfluid phase the separate electron and hole chemical po-
tentials display a jump when reversing the population imbal-
ance from more electrons to more holes, while in the normal
phase no jump occurs. Detection of this jump could thus
serve to identify superfluid character in a system.

The electron-hole bilayer system is described by the
grand-canonical Hamiltonian:

K = �
k,�

�k�ck�
† ck� +

1

2�
�

k,k�,q,�,��

Vk−k�
���

� ck+q/2�
† c−k+q/2��

† c−k�+q/2��ck�+q/2�. �1�

Here, k, k�, and q are two-dimensional wave vectors in the
layers, � is the quantization volume �surface area�, ck�

† �ck��
are the creation �destruction� operators for electrons �e� and
holes �h� distinguished by �= �e ,h�, the �k�=�k�−�� are the
band dispersions with chemical potentials �� for electrons
and holes, �ke=k2 / �2me�+Eg and �h�k�=k2 / �2mh�. The
semiconductor band gap Eg can be reabsorbed in the electron
chemical potential. Explicit spin quantum numbers are omit-
ted.

We have carried out our calculations in the zero-
temperature limit, where a mean-field description of the
BCS-BEC crossover is appropriate even in two

PHYSICAL REVIEW B 75, 113301 �2007�

1098-0121/2007/75�11�/113301�4� ©2007 The American Physical Society113301-1

http://dx.doi.org/10.1103/PhysRevB.75.113301


dimensions.24 Following Refs. 10 and 15 we use an un-
screened electron-hole attractive potential Vk

eh=−2�e2 exp
��−kd� / �k��, where � is the background dielectric constant.
The standard approximations with full single-particle screen-
ing are not applicable across the entire BCS-BEC crossover
which carries the system from fermionic to bosonic. Further-
more, screening is less effective in the superfluid phase be-
cause of the excitation gap.10

In the present calculation we neglect the intralayer Cou-
lomb repulsions Vee and Vhh. In the absence of density im-
balance, Vee and Vhh can be readily included in a mean-field
treatment,10 but when the densities are imbalanced, including
Vee and Vhh in the mean field requires a detailed knowledge
of how overall charge neutrality is attained. This is in order
to avoid divergence of the Hartree term. This depends on the
specific engineering configuration of the device, and there-
fore in the interests of generality we drop Vee and Vhh here.
When the densities are equal we can compare with Ref. 10,
and we have verified that omitting Vee and Vhh reduces the
size of the gap by an amount no larger than 30%. As a
separate issue, and as we have already noted, intralayer re-
pulsion should stabilize the system against phase separation.
For this reason, we exclude the possibility of phase separa-
tion from our discussion of the phase diagram.

The relevant mean-field equations to be solved for the
variables �e, �h, and the �s-wave� gap function 	k are

	k = −
1

�
�
k�

Vk−k�
eh 	k�

2Ek�
�1 − f�Ek�

+ � − f�Ek�
− �� , �2�

ne,h =
1

�
�
k

�uk
2 f�Ek

+,−� + vk
2�1 − f�Ek
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where f�E�=
�−E� is the Fermi function at zero tempera-
ture, Ek=��k

2 +	k
2 with �k= ��k

e +�k
h� /2, and Ek

±=Ek±��k with
��k= ��k

e −�k
h� /2. In addition, vk

2 =1−uk
2 = �1−�k /Ek� /2.

Throughout, we express lengths in units of the effective Bohr
radius a0

*, and energies in units of the effective Rydberg
Ry*.25 In two dimensions the average interparticle spacing is
rs= ���ne+nh� /2�−1/2.

Figure 1�a� shows the wave-vector dependence of 	k for
equal densities, layer separation d=1, and several values of
rs. These values of rs and d are experimentally attainable.
The wave-vector position kmax of the peak in the gap func-
tion evolves from a finite value in the BCS regime �small rs�
toward zero in the BEC regime �large rs�, while the corre-
sponding value 	max of the gap function attains its maximum
for intermediate rs. This is a generic feature of the density-
induced BCS-BEC crossover.26

We have verified for several values of the distance 1�d
�4 that the optimal value of rs at which 	max attains its
largest value is located close to the value of rs where the
average chemical potential �= ��e+�h� /2 crosses zero. For
d=1 this occurs near rs=3. This finding is in line with results
for the BCS-BEC crossover with a contact potential in three
dimensions, namely, that superfluid properties are more

robust in the region located between the Fano-Feshbach
resonance and the vanishing of the chemical potential.27 The
narrow region lying between the optimal value of rs and the
value corresponding to �=0 thus identifies the middle of the
crossover region between the BCS and BEC regimes for the
electron-hole bilayer.

The effect of the density imbalance 
	�ne−nh� / �ne+nh�
on 	max is shown in Fig. 1�b�. We see that the density im-
balance acts to reduce the magnitude of the energy gap and
that it has different effects on the two sides of the crossover.
In the BCS regime, the mismatch of the Fermi surfaces for
electrons and holes strongly affects the superfluid properties
of the system. Superfluidity is lost when the Fermi energies
mismatch becomes large compared with the value of 	max
for equal densities. In the BEC regime, the superfluid prop-
erties are less sensitive to density imbalance, whose main
effect is then to reduce the number of electron-hole pairs.

Figure 2 shows the zero-temperature phase diagram for
d=1. We can identify various phases using 	k, determined
from Eq. �2�, and the superfluid �mass� density �s. Within
mean-field theory and in the zero-temperature limit, �s is
given by

�s = mene + mhnh −
1

4�
�
j,�

�kj
��3


dEk
�

dk



k=kj
�

. �4�

Here, kj
� is the jth zero of Ek

�=0 with �= �+,−�. �For positive
�negative� density imbalance only Ek

+ �Ek
−� has zeros, while

no zero occurs for 
=0.�
The normal phase �N� corresponds to the trivial solution

	k=0. The Sarma phases corresponds to nonvanishing 	k
when 
�0 and positive superfluid density �s. S1 and S2

FIG. 1. �Color online� �a� Wave-vector dependence of the gap
function for 
=0, d=1, and several values of rs; �b� maximum
value 	max=max�	k� vs 
 for d=1 and several values of rs.
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denote the Sarma phases for one and two Fermi surfaces,
respectively. There will be one zero of Ek

� �j=1� for the S1
phase �one Fermi surface�, and two zeros �j=1,2� for the S2
phase �two Fermi surfaces�. Sometimes, the Sarma S2 phase
is called the “breached-pair” phase after Ref. 20. A negative
value of �s in Eq. �5� indicates that the Sarma phase is un-
stable toward a phase with a spontaneously generated super-
fluid current, which we associate28,29 with the FFLO phase.
We have verified that the Sarma phase, whenever it exists, is
always lower in energy with respect to the normal phase.
�We recall in this respect that our calculation is at fixed den-
sity imbalance, while the original Sarma calculation was at
fixed chemical potentials.�

The most prominent feature of Fig. 2 is the marked de-
pendence of the phase diagram on the sign of 
.30 In particu-
lar, while the boundary of the normal phase does not depend
appreciably on the sign of 
, the region of stability of the
Sarma phase with respect to the FFLO phase depends dra-
matically on the sign. For 
�0, the phase diagram is domi-
nated by the FFLO phase, with the Sarma �S1� phase being
confined to the extreme BEC region, while for 
�0, the
FFLO phase is compressed into the region of small rs.

Such an asymmetry can be understood in terms of the
relevant dispersion Ek

+ �Ek
−� for positive �negative� 
. Due to

the mass difference, the term 2��k which is added �sub-
tracted� to Ek makes the dispersion Ek

+ �Ek
−� steeper �flatter�

with respect to the case of equal masses. As it is clear from
the last term in Eq. �4�, a flatter dispersion will make the
superfluid density more negative, thus replacing the Sarma
phase with the FFLO phase. The opposite occurs for positive

, when the relevant dispersion becomes steeper.

In this part of the phase diagram there is some room even
for the S2 Sarma phase. So far, this phase was found in the
literature to be very fragile, being invariably replaced by
phase separation or by the development of a FFLO
phase.20,28,31 Here, the concurrence of several favorable fac-
tors, the mass difference, the wave-vector dependence of the
gap, and the intralayer Coulomb repulsion, all serve to sta-
bilize the S2 Sarma phase in an appreciable region of the
phase diagram.

We note that the largest number of phases occurs for in-
termediate values of rs �say, rs=1.5–3�, corresponding to the
smooth crossover region between the BCS and BEC limits
for 
=0. For nonzero 
, several transition lines can be
crossed in this region by varying 
 or rs. This is thus the
most fertile region to be explored experimentally, also be-
cause we recall in the same region 	max is largest and the
superfluidity most robust.

In this respect, the behavior of the separate chemical po-
tentials �e and �h vs 
 can serve to reveal the appearance of
a finite value for the gap 	. This is because �e and �h must
show a jump across 
=0 in order to sustain a finite density
imbalance in the superfluid phase. This behavior is shown in
Fig. 3 for d=1 and rs=3, when �e�
=0+�−�e�
=0−�
�2	max. The possible instability toward the FFLO phase we
discussed above should not affect the occurrence of this
jump. Physical quantities obtained for the Sarma and the
FFLO phases should, in fact, merge continuously when 

approaches zero, owing to the corresponding vanishing of
the modulation wave vector associated with the FFLO
phase.29

It is useful to discuss the sensitivity of our results to the
parameters used in the calculations. Increasing the distance d
will shift the location of the intermediate region where most
phases are seen, to larger values of rs �for d=2, e.g., the shift
is about a 30%�, but it does not alter the shape of the phase
diagram. Reducing the mass difference has the effect of con-
tracting the FFLO phase for negative 
 and expanding it for
positive 
. This is as expected from the arguments discussed
above. However, even for equal masses the phase diagram
changes only quantitatively, allowing even in this case some
space for the S2 Sarma phase. Finite temperature assists in
stabilizing the Sarma phases with respect to the FFLO: the
superfluid density is, in fact, quite sensitive to temperature in
the presence of density imbalance. We have found, however,
that temperatures below 1 K do not appreciably alter the
phase diagram in the most interesting intermediate rs region.
Finally, a reduction of the FFLO phase due to the intralayer
Coulomb repulsion may occur but this reduction should be
limited to the region of large rs, where the spatial modulation
of the gap parameter is expected to be accompanied by a
density modulation.

FIG. 2. �Color online� Zero-temperature phase diagram for d
=1, showing the stability domains of the different phases: normal
�N�, Sarma �S1 and S2�, and FFLO. The dashed line corresponds to
the curve �=0, and the dash-dotted line separates the S1 and S2
phases. Note the logarithmic scale for rs.

FIG. 3. �Color online� Zero-temperature electron ��e� and hole
��h� chemical potentials vs 
 for d=1 and rs=3. The average
chemical potential � is also shown.
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In conclusion, we have shown that electron-hole bilayers
are promising candidates for revealing a variety of superfluid
phases while traversing the BCS-BEC crossover. Exotic
phases such as the FFLO and the S2 Sarma phases which
have been so far elusive to experimental detection, should be

notably robust in electron-hole bilayer systems.
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1 M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H.
Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 120401 �2004�;
C. A. Regal, M. Greiner, and D. S. Jin, ibid. 92, 040403 �2004�;
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, ibid. 92, 120403 �2004�.

2 C. Comte and P. Nozières, J. Phys. �Paris� 43, 1069 �1982�; P.
Nozières and C. Comte, ibid. 43, 1083 �1982�.

3 L. V. Keldysh and Y. V. Kopaev, Fiz. Tverd. Tela �Leningrad� 6,
2791 �1964� �Sov. Phys. Solid State 6, 2219 �1965��; L. V.
Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 �1968�
�Sov. Phys. JETP 27, 521 �1968��.

4 S. I. Shevchenko, Fiz. Nizk. Temp. 2, 1405 �1976� �Sov. J. Low
Temp. Phys. 2, 251 �1976��.

5 Y. E. Lozovik and V. I. Yudson, Zh. Eksp. Teor. Fiz. Pis’ma Red.
22, 556 �1975� �JETP Lett. 22, 274 �1975��; Zh. Eksp. Teor. Fiz.
71, 738 �1976� �Sov. Phys. JETP 44, 389 �1976��.

6 L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature �London�
418, 751 �2002�; A. T. Hammack, M. Griswold, L. V. Butov, L.
E. Smallwood, A. L. Ivanov and A. C. Gossard, Phys. Rev. Lett.
96, 227402 �2006�; Sen. Yang, A. T. Hammack, M. M. Fogler,
L. V. Butov, and A. C. Gossard, ibid. 97, 187402 �2006�.

7 M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys.
Rev. Lett. 93, 036801 �2004�; E. Tutuc, M. Shayegan, and D. A.
Huse, ibid. 93, 036802 �2004�; J. P. Eisenstein, Science 305,
950 �2004�.

8 For a review, see J. P. Eisenstein and A. H. MacDonald, Nature
�London� 432, 691 �2004�.

9 J. Szymański, L. Świerkowski, and D. Neilson, Phys. Rev. B 50,
11002 �1994�.

10 X. Zhu et al., Phys. Rev. Lett. 74, 1633 �1995�.
11 Z. W. Gortel and L. Świerkowski, Surf. Sci. 361/362, 146 �1996�.
12 S. De Palo, F. Rapisarda, and G. Senatore, Phys. Rev. Lett. 88,

206401 �2002�.
13 M. Pohlt et al., Appl. Phys. Lett. 80, 2105 �2002�.
14 J. A. Seamons et al., cond-mat/0611220 �unpublished�.
15 P. B. Littlewood et al., J. Phys.: Condens. Matter 16, S3597

�2004�.
16 G. Sarma, J. Phys. Chem. Solids 24, 1029 �1963�.
17 M. W. Zwierlein et al., Science 311, 492 �2006�; G. B. Partridge

et al., ibid. 311, 503 �2006�; Y. Shin, M. W. Zwierlein, C. H.
Schunk, A. Schirotzek, and W. Ketterle, Phys. Rev. Lett. 97,

030401 �2006�.
18 J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 �2005�;

C.-H. Pao, Shin-Tza Wu, and S.-K. Yip, Phys. Rev. B 73,
132506 �2006�; D. E. Sheehy, and L. Radzihovsky, Phys. Rev.
Lett. 96, 060401 �2006�.

19 P. Pieri and G. C. Strinati, Phys. Rev. Lett. 96, 150404 �2006�; J.
Kinnunen, L. M. Jensen, and P. Törmä, ibid. 96, 110403 �2006�;
W. Yi and L. M. Duan, Phys. Rev. A 73, 031604�R� �2006�; F.
Chevy, Phys. Rev. Lett. 96, 130401 �2006�; T. N. De Silva and
E. J. Mueller, Phys. Rev. A 73, 051602�R� �2006�; M. Haque
and H. T. C. Stoof, ibid. 74, 011602�R� �2006�; J.-P. Marti-
kainen, ibid. 74, 013602 �2006�; C.-C. Chien, Q. Chen, Y. He,
and K. Levin, ibid. 74, 021602�R� �2006�.

20 Michael McNeil Forbes, E. Gubankova, W. V. Liu, and F. Wilc-
zek, Phys. Rev. Lett. 94, 017001 �2005�.

21 D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614 �2006�;
A. Bulgac, M. McNeil Forbes, and A. Schwenk, Phys. Rev. Lett.
97, 020402 �2006�; M. Mannarelli, G. Nardulli, and M. Rug-
gieri, Phys. Rev. A 74, 033606 �2006�.

22 L. V. Butov, A. Imamoglu, K. L. Campman, and A. C. Gossard,
Zh. Eksp. Teor. Fiz. 119, 301 �2001� �JETP 92, 260 �2001��.

23 P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 �1964�; A. I.
Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136
�1964� �Sov. Phys. JETP 20, 762 �1965��.

24 P. Nozières and F. Pistolesi, Eur. Phys. J. B 10, 649 �1999�.
25 For GaAs-AlGaAs bilayers, a0

*=12.03 nm and Ry* =4.64 meV
corresponding to the values �=12.9 �times the vacuum dielectric
constant �0�, me=0.07 and mh=0.30 �in units of the electron
mass�.

26 N. Andrenacci, A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. B
60, 12410 �1999�.

27 N. Andrenacci, P. Pieri, and G. C. Strinati, Phys. Rev. B 68,
144507 �2003�.

28 S. T. Wu and S. Yip, Phys. Rev. A 67, 053603 �2003�.
29 L. He, M. Jin, and P. Zhuang, Phys. Rev. B 73, 214527 �2006�,

and references therein.
30 A similar behavior was recently found for ultracold Fermi atoms

by M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. 97,
100404 �2006�.

31 P. F. Bedaque, H. Caldas, and G. Rupak, Phys. Rev. Lett. 91,
247002 �2003�.

BRIEF REPORTS PHYSICAL REVIEW B 75, 113301 �2007�

113301-4




